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Conversational agents are getting ever more prevalent in online activities. There are many different 
approaches to measuring acceptance rate for such systems. In this paper, we explore the option of 
detecting user frustration in text-based user messages. Five text mining techniques (Decision Table 
Majority, Naive Bayes, Multilayer Perceptron, Sequential minimal optimisation, and K*) are compared 
in a supervised learning scenario using different quantifiable parameters. The comparison between 
these techniques shows that Sequential Minimal Optimisation is quickest and most accurate for 
detecting user frustration in text-based user messages.  

Conversational agents, chat bots, text mining, supervised learning. 

1. INTRODUCTION 

Conversational agents (CA) are defined as systems 
that can keep a coherent conversation with human 
using different types of interfaces. The use cases of 
conversational agents are wide ranging from 
personal assistants on a cell phone over booking 
assistants on web sites for hotels and flights (Allen 
et al. 2001) to pure entertainment (Existor 2018).  

Detecting user frustration in a conversation with a 
CA is useful for a number of reasons. CA developers 
can later review conversations where frustration is 
detected in order to improve the CA. In a dynamic 
scenario, the conversational agent could itself try to 
resolve the frustration upon detecting it, e.g., 
(Ramos 2017; van Eeuwen 2017) or pass the 
interaction to a human expert. Klein et al. (2002) 
found that users are more engaged with CA and the 
conversations last longer, if the user is not 
frustrated. Thus, detecting and reacting to frustration 
could vastly decrease the rate of aborted 
conversations. Additionally, Miner et al. (2016) 
found that users perceive negative statements as 
worse when coming from a CA in comparison to a 
human conversation partner. 

Frustration is widely understood as not an emotion, 
but as a state that can result in an emotional 
reaction. Opinions differ regarding the resulting 
emotions. Dollard et al. (1939) claimed that 
frustration unavoidably results in either anger or 
aggression and the presence of these emotions 

always indicate underlying frustration. Bandura 
(1973) suggested that frustration is an individual 
reaction, varying from person to person depending 
on personal education and experience. Berkowitz 
(1989) later added depression and sadness as a 
possible result of frustration. 

Text mining can be understood as a special type of 
data mining, through which non-trivial information is 
extracted from text data, whereas data mining 
occupies itself with extracting information from any 
type of data (Tan et al. 1999). Different attempts at 
detecting user emotion in various scenarios have 
been attempted, including deriving emotional state 
from peripheral information such as tone of voice 
and biological factors such as skin conductance 
(Greco et al. 2016). Kapoor et al. (2007) conducted 
experiments, in which participant’s frustration was 
tracked using self-reports. This paper limits itself to 
textual information. The goal of this paper is to 
compare different text mining techniques regarding 
the accuracy in detecting user frustration. The 
resulting process and model after applying a text 
mining technique could be extracted and used in an 
existing conversational agent. 

2. METHODOLOGY 

In order to find the most fitting method for detecting 
user frustration in text-based user messages 
involving a CA, different text mining techniques are 
compared using a database of manually tagged chat 
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lines. Additionally, a selection of pre-processing 
methods are compared in conjunction with each text 
mining technique. The overall process yielding a 
large number of models is shown in Figure 1. 

 
Figure 1. Data flow and model creation process 

2.1 Data collection and coding 

Based on the findings of Berkowitz (1989), we 
assume that a user is frustrated if either sadness or 
anger is visible in a text message. The presence of 
these emotions are deducted using the emotional 
lexicon EmoLex by Mohammad and Turney (2013). 
This lexicon maps more than 10,000 words to their 
respective associated emotions. The eight emotions 
used (anger, disgust, sadness, surprise, fear, trust, 
joy and anticipation) are taken from the basic levels 
of the wheel of emotions defined by Plutchik (2001). 
This mapping is used to assist the semi-automatic 
process of flagging the test data.  

The chat excerpts are taken from publicly available 
corpora of conversations between humans and a 
conversational agent in English language (AI 
Research 2018). These chat excerpts are then 
flagged as frustrated or not frustrated based on 
the emotion determined by EmoLex using the words 
used in the message. This is carried out in a semi-
automated manner to get a large body of test data 
in a reasonable time while also ensuring accuracy. 
All sentences are pre-flagged for confirmation or 
correction by a human using the mapping provided 
in EmoLex in a simple command line script. Flagging 
the data in this manner results in a data set with 
roughly 10% of the messages being annotated as 
frustrated. This data (whose format consists of the 
message and a frustrated flag) is then pre-
processed using different pre-processing methods. 

2.2 Pre-processing 

In addition to implementations of text mining 
techniques provided by the data mining software 
Weka University of Waikato (2018), this software 
also provides a wide variety of pre-processing 
methods. Tokenisers decompose an input test into 
a word vector that represents token appearances 

the text, either as a count or a boolean value. 
Stemmers break down words to some kind of root, 
so that different conjugations of the same root result 
in the same token. The word tokeniser, n-gram 
tokeniser and the Lovin’s stemmer (Lovins 1968) are 
included in the pre-processing step in this study. 

Additionally, adopting a different pre-processing 
technique, user messages are run through the NLTK 
developed by Loper and Bird (2002). In this process, 
negative sentence parts are marked as such in 
context so that the word vector contains negative 
words with a unique prefix, for example NEG_. 
Using this method, the sentence “I don’t find this 
funny” would be turned into “I don’t NEG_find 
NEG_this NEG_funny”. With this method, it is 
possible for the text mining algorithm to differentiate 
between similar sounding statements more easily, 
because the sentence used in the example does not 
contain the token “funny” that could otherwise lead 
to the sentence being classified as containing 
positive emotions. After the pre-processing 
procedure, the test data consists of an input token 
vector determined by the tokeniser and the value for 
the frustrated flag. 

2.3 Classifiers 

As for the classifiers five different candidates are 
compared, all of which are included in Weka by 
default. These classifiers were chosen from the 
Weka library with the aim to be as different as 
possible to provide a broad overview over the 
possible choices. 

The first and most simple one is the decision table. 
It composes a short list of rules during training, 
against which the test data is matched and 
classified. Rules are added until the improvement in 
accuracy falls below a pre-determined threshold. 
The Decision Table Majority (DTM) used in Weka 
falls back to the majority output in case no rule 
applies (Kohavi 1995). 

Naive Bayes is a more complex and more widely 
used classifier, due to fast training and relatively 
high accuracy (McCallum et al. 1998). It calculates 
independent probabilities for input variables to 
cause changes to output variables during training 
and applies them on the test data. 

A more complex (with respect to training procedure) 
classifier is the multilayer (MLP). It is an example of 
an artificial neural network with an input layer, any 
number of hidden layers and one output layer. Each 
layer can have any number of nodes, the values of 
which are propagated to any number of nodes in the 
next layer multiplied by the edge weight and added 
to a bias. During training the weights and biases are 
calculated using back propagation resulting in a 
quick classification (Pal & Mitra, 1992). 

Sequential minimal optimisation (SMO) builds upon 
support vector machine (SVM), which represents 
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each test instance as an n-dimensional vector, n 
being the size of the input word vector. The resulting 
n-dimensional hyperplane is divided by an (n-1)-
dimensional hyperplane while keeping the maximum 
distance to each test instance. Any new test vector 
is then classified based on which side of the dividing 
plane (Platt 1998). 

K*, a special technique of Weka, is a lazy or instance 
based classifier, meaning that it takes zero time to 
train and compares each test instance against the 
training data during the classification. It uses a 
custom distance function to calculate the closest 
match (Aha et al. 1991). It is not a distance in the 
metric sense as it is not symmetrical and the 
distance of one instance to itself can be unequal 0. 
Cleary and Trigg (1995) claimed that it achieves 
better results over a wide variety of data sets than 
other instance based classifiers. 

3. RESULTS 

The accuracy of detecting user frustration is 
measured using F-measure and the Matthews 
correlation coefficient (MCC). F Measure is 
calculated using the Precision (p) and Recall (r) and 
ranges between 0 (worst) and 1 (best). However, F-
Measure does not take into account the number of 
true negatives. Thus, MCC for binary (i.e., two-class) 
classifications can be used as a complementary 
quality measure. MCC takes true positive, true 
negative, false positive, false negative into account, 
resulting in a number between -1 and +1 with higher 
numbers denoting a better classification. MCC with 
value -1 indicates a total disagreement between 
expected results and observation. TM represents the 
time it took to train the model, except for the 
classifier K*, where it denotes the time it takes to 
classify the test instances (since training is not 
required by instance based classifier K*). Thus, TM 
cannot be directly compared between classifiers, but 
should rather convey a general sense of how quick 
each classifier performs given each data set. 

Table 1. Classification with word tokens and no 
stemming 

 
The results of classifying the data set with almost no 
pre-processing (Table 1) indicate that the complex 
classifier MLP is not necessarily the most accurate, 
with an MCC of 0.089. With the MCC being almost 
zero, it is not substantially better than a classifier 
that, for instance, just guesses based on the output 
distribution of the given training data. SMO and K* 
are the most accurate with MCCs of 0.551 and 
0.515, respectively, while SMO is also among the 

quickest classifiers, taking only 0.26 seconds for 
training. Bayes is even quicker, taking 0.26 seconds, 
but not quite as accurate, being also beaten by DTM 
in terms of accuracy.  

Table 2 shows that stemming improves classifier 
accuracy across the board. Compared to Table 1, 
the improvements regarding MCC range from 0.01 
for K* to 0.357 for MLP. SMO is also the most 
accurate for this data set, with an MCC of 0.578, 
while sharing the first place for speed with 0.14 
seconds, the same as Bayes. MLP profits most from, 
jumping from 0.089 (cf. Table 1) to an MCC of 0.446, 
beating Bayes, which scores an MCC of 0.427. All 
classifiers provide usable accuracy using these pre-
processing methods. TM stays roughly the same for 
each classifier as the input vector size is also about 
the same size, shrinking due to the stemming 
compared to the previous data set (cf. Table 1). 

Table 2. Classification using word tokens and stemming 

 
Table 3 shows that n-gram tokens provide a 
definitive benefit over word tokens but do not result 
in more accuracy than stemming word tokens. All 
classifiers yield a lower MCC compared to the data 
set with stemming and word tokens. The vastly 
larger input vector size (4734 values) due to n-gram 
generating more tokens leads to higher training 
times compared to the first data set (cf. Table 1). 
This is especially clear when looking at TM for DTM, 
MLP and K* where it is an order of magnitude larger 
compared to both previously shown data sets. 
Bayes and SMO are not affected as much and are 
the fastest classifiers still for this data set, taking 
0.76 and 0.29 seconds respectively (cf. Table 3). 

Table 3. Classification using n-gram tokens and no 
stemming 

 

Combining stemming and n-gram tokens does not 
provide a cumulative advantage over each pre-
processing technique (i.e., either stemming or n-
gram tokening) (cf. Table 4). The classifiers perform 
better than using the data set with n-gram tokens 
and no stemming, with the MCC improving between 
0.008 and 0.101, but worse or no better than using 
the data with regular word tokens combined with 
stemming, compared to which the MCC drops up to 
0.193. TM stays roughly the same as for the not-
stemmed n-gram tokens with the input vector token 
having about the same size with 4577 values. 
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Table 4. Classification using n-gram tokens and stemming 

 
Results for using negation marking (cf. Section 2) 
are worse for every single classifier compared to 
each pre-processing method with respect to MCC. 
Based on Table 5, no classifier performs better than 
based on the data without negation marking. These 
numbers also show the flaw in using F-Measure as 
a sole performance indicator, as the F-Measure for 
MLP indicates positive performance, while the MCC 
shows that it provides almost no benefit over random 
guessing based on output distribution. TM is roughly 
the same as in the first two data sets as the input 
vector is also about the same size. 

Table 5. Classification using negation marked input data 

 
Table 6 confirms the MLP as the worst classifier of 
text mining techniques in this scenario with an MCC 
of only 0.194. SMO performs best with an MCC of 
0.552 while also being the quickest, taking only 0.32 
seconds followed by K* and DTM with an MCC of 
0.507 and 0.5, respectively. Bayes stills performs 
better than MLP while also being a lot faster, scoring 
an MCC of 0.374 and taking 0.42 seconds. 

Table 6. Average results by classifier 

 
Table 7: Average results by input data set 

 
Comparing the pre-processing techniques used on 
the different data sets, Table 7 shows the average 
results over data set with different pre-processing 
methods. The data set that produces the best single 
result, word tokens combined with stemming 
classified by SMO with an MCC of 0.578 (cf. Table 
2), also performs best on average for all classifiers, 
reaching an MCC of 0.521 on average. Combining 
stemming and n-gram tokens results in the second 
best results on average with an MCC of 0.508, 

followed by not-stemmed data with n-gram tokens 
and word tokens, both with an MCC of 0.473. 
Negation marked input provides the worst accuracy 
of the pre-processing methods (MCC=0.442). 

4. DISCUSSION 

Surprisingly, the most complex and time intensive 
classifier does not provide the most accurate results 
for detecting frustration in text-based user 
messages. The bad performance of MLP is 
especially interesting as it is a widely used tool for  
complex tasks, for example image recognition and 
classification (Atkinson & Tatnall 1997). This might 
be a result of unfitting configuration for this task. Due 
to the time it takes to classify the multilayer 
perceptron and the large number of options Weka 
provides, it was not viable to find the optimal settings 
in a trial-and-error approach. The long training time 
might be improved by reducing the number of hidden 
nodes. SMO is by far the best classifier for the 
frustration detection as it requires no further 
configuration and is fast even when confronted with 
large data sets. K* did not perform much worse, but 
the time it takes to for classification due to its 
instance based architecture makes it not an ideal 
candidate. In terms of pre-processing, stemming 
proved to be the most useful tool with n-gram tokens 
only improving accuracy by a smaller amount while 
also causing higher complexity due to a larger input 
vector size. 

5. CONCLUSIONS AND FUTURE WORK 

The goal of this paper was to compare different text 
mining techniques regarding their usefulness for 
detecting user frustration in a conversation between 
human and a conversational agent. A few 
techniques proved to be of little use for this task. 
Marking negative words in the context of a sentence 
did not improve accuracy for any classifier. MLP 
showed to be too slow and inaccurate to be useful 
in a real time scenario. The Bayes approach delivers 
passable results but was surpassed by others in 
terms of speed. The SVM with the improvements 
provided by SMO and trained on stemmed input 
data showed to be highly accurate and quick in 
deciding whether the user is frustrated or not.  

In future, the comparison could be repeated using a 
larger input data set or in a different language. Stop 
words were also not utilised because existing stop 
word lists are largely focused on classifying text by 
content and category, not by emotion, and would 
probably remove words from the messages that are 
useful for detecting emotion. Taking context into 
consideration could also improve accuracy as these 
input data sets were only being classified on their 
own with no regards to previous messages by either 
party of the conversation. 
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