

1

© 2018, Hauke Hinrichs, Nguyen-Thinh Le.
Published by BCS Learning and Development Ltd.
Proceedings of British HCI 2018. Belfast, UK.

Which Text-Mining Technique Would Detect
Most Accurate User Frustration in Chats With

Conversational Agents?

Hauke Hinrichs and Nguyen-Thinh Le
Humboldt-Universität zu Berlin

Germany
{hinricha, lenguyen}@informatik.hu-berlin.de

Conversational agents are getting ever more prevalent in online activities. There are many different
approaches to measuring acceptance rate for such systems. In this paper, we explore the option of
detecting user frustration in text-based user messages. Five text mining techniques (Decision Table
Majority, Naive Bayes, Multilayer Perceptron, Sequential minimal optimisation, and K*) are compared
in a supervised learning scenario using different quantifiable parameters. The comparison between
these techniques shows that Sequential Minimal Optimisation is quickest and most accurate for
detecting user frustration in text-based user messages.

Conversational agents, chat bots, text mining, supervised learning.

1. INTRODUCTION

Conversational agents (CA) are defined as systems
that can keep a coherent conversation with human
using different types of interfaces. The use cases of
conversational agents are wide ranging from
personal assistants on a cell phone over booking
assistants on web sites for hotels and flights (Allen
et al. 2001) to pure entertainment (Existor 2018).

Detecting user frustration in a conversation with a
CA is useful for a number of reasons. CA developers
can later review conversations where frustration is
detected in order to improve the CA. In a dynamic
scenario, the conversational agent could itself try to
resolve the frustration upon detecting it, e.g.,
(Ramos 2017; van Eeuwen 2017) or pass the
interaction to a human expert. Klein et al. (2002)
found that users are more engaged with CA and the
conversations last longer, if the user is not
frustrated. Thus, detecting and reacting to frustration
could vastly decrease the rate of aborted
conversations. Additionally, Miner et al. (2016)
found that users perceive negative statements as
worse when coming from a CA in comparison to a
human conversation partner.

Frustration is widely understood as not an emotion,
but as a state that can result in an emotional
reaction. Opinions differ regarding the resulting
emotions. Dollard et al. (1939) claimed that
frustration unavoidably results in either anger or
aggression and the presence of these emotions

always indicate underlying frustration. Bandura
(1973) suggested that frustration is an individual
reaction, varying from person to person depending
on personal education and experience. Berkowitz
(1989) later added depression and sadness as a
possible result of frustration.

Text mining can be understood as a special type of
data mining, through which non-trivial information is
extracted from text data, whereas data mining
occupies itself with extracting information from any
type of data (Tan et al. 1999). Different attempts at
detecting user emotion in various scenarios have
been attempted, including deriving emotional state
from peripheral information such as tone of voice
and biological factors such as skin conductance
(Greco et al. 2016). Kapoor et al. (2007) conducted
experiments, in which participant’s frustration was
tracked using self-reports. This paper limits itself to
textual information. The goal of this paper is to
compare different text mining techniques regarding
the accuracy in detecting user frustration. The
resulting process and model after applying a text
mining technique could be extracted and used in an
existing conversational agent.

2. METHODOLOGY

In order to find the most fitting method for detecting
user frustration in text-based user messages
involving a CA, different text mining techniques are
compared using a database of manually tagged chat

Which Text-Mining Technique Would Detect Most Accurate User Frustration in Chats With Conversational Agents?
Hauke Hinrichs ● Nguyen-Thinh Le

2

lines. Additionally, a selection of pre-processing
methods are compared in conjunction with each text
mining technique. The overall process yielding a
large number of models is shown in Figure 1.

Figure 1. Data flow and model creation process

2.1 Data collection and coding

Based on the findings of Berkowitz (1989), we
assume that a user is frustrated if either sadness or
anger is visible in a text message. The presence of
these emotions are deducted using the emotional
lexicon EmoLex by Mohammad and Turney (2013).
This lexicon maps more than 10,000 words to their
respective associated emotions. The eight emotions
used (anger, disgust, sadness, surprise, fear, trust,
joy and anticipation) are taken from the basic levels
of the wheel of emotions defined by Plutchik (2001).
This mapping is used to assist the semi-automatic
process of flagging the test data.

The chat excerpts are taken from publicly available
corpora of conversations between humans and a
conversational agent in English language (AI
Research 2018). These chat excerpts are then
flagged as frustrated or not frustrated based on
the emotion determined by EmoLex using the words
used in the message. This is carried out in a semi-
automated manner to get a large body of test data
in a reasonable time while also ensuring accuracy.
All sentences are pre-flagged for confirmation or
correction by a human using the mapping provided
in EmoLex in a simple command line script. Flagging
the data in this manner results in a data set with
roughly 10% of the messages being annotated as
frustrated. This data (whose format consists of the
message and a frustrated flag) is then pre-
processed using different pre-processing methods.

2.2 Pre-processing

In addition to implementations of text mining
techniques provided by the data mining software
Weka University of Waikato (2018), this software
also provides a wide variety of pre-processing
methods. Tokenisers decompose an input test into
a word vector that represents token appearances

the text, either as a count or a boolean value.
Stemmers break down words to some kind of root,
so that different conjugations of the same root result
in the same token. The word tokeniser, n-gram
tokeniser and the Lovin’s stemmer (Lovins 1968) are
included in the pre-processing step in this study.

Additionally, adopting a different pre-processing
technique, user messages are run through the NLTK
developed by Loper and Bird (2002). In this process,
negative sentence parts are marked as such in
context so that the word vector contains negative
words with a unique prefix, for example NEG_.
Using this method, the sentence “I don’t find this
funny” would be turned into “I don’t NEG_find
NEG_this NEG_funny”. With this method, it is
possible for the text mining algorithm to differentiate
between similar sounding statements more easily,
because the sentence used in the example does not
contain the token “funny” that could otherwise lead
to the sentence being classified as containing
positive emotions. After the pre-processing
procedure, the test data consists of an input token
vector determined by the tokeniser and the value for
the frustrated flag.

2.3 Classifiers

As for the classifiers five different candidates are
compared, all of which are included in Weka by
default. These classifiers were chosen from the
Weka library with the aim to be as different as
possible to provide a broad overview over the
possible choices.

The first and most simple one is the decision table.
It composes a short list of rules during training,
against which the test data is matched and
classified. Rules are added until the improvement in
accuracy falls below a pre-determined threshold.
The Decision Table Majority (DTM) used in Weka
falls back to the majority output in case no rule
applies (Kohavi 1995).

Naive Bayes is a more complex and more widely
used classifier, due to fast training and relatively
high accuracy (McCallum et al. 1998). It calculates
independent probabilities for input variables to
cause changes to output variables during training
and applies them on the test data.

A more complex (with respect to training procedure)
classifier is the multilayer (MLP). It is an example of
an artificial neural network with an input layer, any
number of hidden layers and one output layer. Each
layer can have any number of nodes, the values of
which are propagated to any number of nodes in the
next layer multiplied by the edge weight and added
to a bias. During training the weights and biases are
calculated using back propagation resulting in a
quick classification (Pal & Mitra, 1992).

Sequential minimal optimisation (SMO) builds upon
support vector machine (SVM), which represents

Which Text-Mining Technique Would Detect Most Accurate User Frustration in Chats With Conversational Agents?
Hauke Hinrichs ● Nguyen-Thinh Le

3

each test instance as an n-dimensional vector, n
being the size of the input word vector. The resulting
n-dimensional hyperplane is divided by an (n-1)-
dimensional hyperplane while keeping the maximum
distance to each test instance. Any new test vector
is then classified based on which side of the dividing
plane (Platt 1998).

K*, a special technique of Weka, is a lazy or instance
based classifier, meaning that it takes zero time to
train and compares each test instance against the
training data during the classification. It uses a
custom distance function to calculate the closest
match (Aha et al. 1991). It is not a distance in the
metric sense as it is not symmetrical and the
distance of one instance to itself can be unequal 0.
Cleary and Trigg (1995) claimed that it achieves
better results over a wide variety of data sets than
other instance based classifiers.

3. RESULTS

The accuracy of detecting user frustration is
measured using F-measure and the Matthews
correlation coefficient (MCC). F Measure is
calculated using the Precision (p) and Recall (r) and
ranges between 0 (worst) and 1 (best). However, F-
Measure does not take into account the number of
true negatives. Thus, MCC for binary (i.e., two-class)
classifications can be used as a complementary
quality measure. MCC takes true positive, true
negative, false positive, false negative into account,
resulting in a number between -1 and +1 with higher
numbers denoting a better classification. MCC with
value -1 indicates a total disagreement between
expected results and observation. TM represents the
time it took to train the model, except for the
classifier K*, where it denotes the time it takes to
classify the test instances (since training is not
required by instance based classifier K*). Thus, TM
cannot be directly compared between classifiers, but
should rather convey a general sense of how quick
each classifier performs given each data set.

Table 1. Classification with word tokens and no
stemming

The results of classifying the data set with almost no
pre-processing (Table 1) indicate that the complex
classifier MLP is not necessarily the most accurate,
with an MCC of 0.089. With the MCC being almost
zero, it is not substantially better than a classifier
that, for instance, just guesses based on the output
distribution of the given training data. SMO and K*
are the most accurate with MCCs of 0.551 and
0.515, respectively, while SMO is also among the

quickest classifiers, taking only 0.26 seconds for
training. Bayes is even quicker, taking 0.26 seconds,
but not quite as accurate, being also beaten by DTM
in terms of accuracy.

Table 2 shows that stemming improves classifier
accuracy across the board. Compared to Table 1,
the improvements regarding MCC range from 0.01
for K* to 0.357 for MLP. SMO is also the most
accurate for this data set, with an MCC of 0.578,
while sharing the first place for speed with 0.14
seconds, the same as Bayes. MLP profits most from,
jumping from 0.089 (cf. Table 1) to an MCC of 0.446,
beating Bayes, which scores an MCC of 0.427. All
classifiers provide usable accuracy using these pre-
processing methods. TM stays roughly the same for
each classifier as the input vector size is also about
the same size, shrinking due to the stemming
compared to the previous data set (cf. Table 1).

Table 2. Classification using word tokens and stemming

Table 3 shows that n-gram tokens provide a
definitive benefit over word tokens but do not result
in more accuracy than stemming word tokens. All
classifiers yield a lower MCC compared to the data
set with stemming and word tokens. The vastly
larger input vector size (4734 values) due to n-gram
generating more tokens leads to higher training
times compared to the first data set (cf. Table 1).
This is especially clear when looking at TM for DTM,
MLP and K* where it is an order of magnitude larger
compared to both previously shown data sets.
Bayes and SMO are not affected as much and are
the fastest classifiers still for this data set, taking
0.76 and 0.29 seconds respectively (cf. Table 3).

Table 3. Classification using n-gram tokens and no
stemming

Combining stemming and n-gram tokens does not
provide a cumulative advantage over each pre-
processing technique (i.e., either stemming or n-
gram tokening) (cf. Table 4). The classifiers perform
better than using the data set with n-gram tokens
and no stemming, with the MCC improving between
0.008 and 0.101, but worse or no better than using
the data with regular word tokens combined with
stemming, compared to which the MCC drops up to
0.193. TM stays roughly the same as for the not-
stemmed n-gram tokens with the input vector token
having about the same size with 4577 values.

Which Text-Mining Technique Would Detect Most Accurate User Frustration in Chats With Conversational Agents?
Hauke Hinrichs ● Nguyen-Thinh Le

4

Table 4. Classification using n-gram tokens and stemming

Results for using negation marking (cf. Section 2)
are worse for every single classifier compared to
each pre-processing method with respect to MCC.
Based on Table 5, no classifier performs better than
based on the data without negation marking. These
numbers also show the flaw in using F-Measure as
a sole performance indicator, as the F-Measure for
MLP indicates positive performance, while the MCC
shows that it provides almost no benefit over random
guessing based on output distribution. TM is roughly
the same as in the first two data sets as the input
vector is also about the same size.

Table 5. Classification using negation marked input data

Table 6 confirms the MLP as the worst classifier of
text mining techniques in this scenario with an MCC
of only 0.194. SMO performs best with an MCC of
0.552 while also being the quickest, taking only 0.32
seconds followed by K* and DTM with an MCC of
0.507 and 0.5, respectively. Bayes stills performs
better than MLP while also being a lot faster, scoring
an MCC of 0.374 and taking 0.42 seconds.

Table 6. Average results by classifier

Table 7: Average results by input data set

Comparing the pre-processing techniques used on
the different data sets, Table 7 shows the average
results over data set with different pre-processing
methods. The data set that produces the best single
result, word tokens combined with stemming
classified by SMO with an MCC of 0.578 (cf. Table
2), also performs best on average for all classifiers,
reaching an MCC of 0.521 on average. Combining
stemming and n-gram tokens results in the second
best results on average with an MCC of 0.508,

followed by not-stemmed data with n-gram tokens
and word tokens, both with an MCC of 0.473.
Negation marked input provides the worst accuracy
of the pre-processing methods (MCC=0.442).

4. DISCUSSION

Surprisingly, the most complex and time intensive
classifier does not provide the most accurate results
for detecting frustration in text-based user
messages. The bad performance of MLP is
especially interesting as it is a widely used tool for
complex tasks, for example image recognition and
classification (Atkinson & Tatnall 1997). This might
be a result of unfitting configuration for this task. Due
to the time it takes to classify the multilayer
perceptron and the large number of options Weka
provides, it was not viable to find the optimal settings
in a trial-and-error approach. The long training time
might be improved by reducing the number of hidden
nodes. SMO is by far the best classifier for the
frustration detection as it requires no further
configuration and is fast even when confronted with
large data sets. K* did not perform much worse, but
the time it takes to for classification due to its
instance based architecture makes it not an ideal
candidate. In terms of pre-processing, stemming
proved to be the most useful tool with n-gram tokens
only improving accuracy by a smaller amount while
also causing higher complexity due to a larger input
vector size.

5. CONCLUSIONS AND FUTURE WORK

The goal of this paper was to compare different text
mining techniques regarding their usefulness for
detecting user frustration in a conversation between
human and a conversational agent. A few
techniques proved to be of little use for this task.
Marking negative words in the context of a sentence
did not improve accuracy for any classifier. MLP
showed to be too slow and inaccurate to be useful
in a real time scenario. The Bayes approach delivers
passable results but was surpassed by others in
terms of speed. The SVM with the improvements
provided by SMO and trained on stemmed input
data showed to be highly accurate and quick in
deciding whether the user is frustrated or not.

In future, the comparison could be repeated using a
larger input data set or in a different language. Stop
words were also not utilised because existing stop
word lists are largely focused on classifying text by
content and category, not by emotion, and would
probably remove words from the messages that are
useful for detecting emotion. Taking context into
consideration could also improve accuracy as these
input data sets were only being classified on their
own with no regards to previous messages by either
party of the conversation.

Which Text-Mining Technique Would Detect Most Accurate User Frustration in Chats With Conversational Agents?
Hauke Hinrichs ● Nguyen-Thinh Le

5

6. REFERENCES

AHA, D. W., D. KIBLER, AND M. K. ALBERT (1991):
Instance-based learning algorithms. Machine
learning, 6, 37–66.

AI RESEARCH (2018): Ai Research Homepage.
http://a-i.com/, online, retrieved 13/06/2018.

ALLEN, J., G. FERGUSON, AND A. STENT (2001):
An architecture for more realistic conversational
systems. In Proceedings of the 6th international
conference on Intelligent user interfaces, ACM,
1–8.

ATKINSON, P. M. AND A. TATNALL (1997):
Introduction neural networks in remote sensing.
International Journal of remote sensing, 18, 699–
709.

BANDURA, A. (1973): Aggression: A social learning
analysis. Prentice-Hall.

BERKOWITZ, L. (1989): Frustration-aggression
hypothesis: Examination and reformulation.
Psychological bulletin, 106, 59.

CLEARY, J. G. AND L. E. TRIGG (1995): K*: An
instance-based learner using an entropic distance
measure. In Machine Learning Proceedings
1995, Elsevier, 108–114.

DOLLARD, J., N. E. MILLER, L. W. DOOB, O. H.
MOWRER, AND R. R. SEARS (1939): Frustration
and aggression.

EXISTOR (2018): Cleverbot Homepage.
http://www.cleverbot.com/, online, retrieved
13/06/2018.

GRECO, A., A. LANATA, L. CITI, N. VANELLO, G.
VALENZA, AND E. P. SCILINGO (2016): Skin
admittance measurement for emotion
recognition: A study over frequency sweep.
Electronics, 5, 46.

KAPOOR, A., W. BURLESON, AND R. W. PICARD
(2007): Automatic prediction of frustration.
International journal of human-computer studies,
65, 724–736.

KLEIN, J., Y. MOON, AND R. PICARD (2002): This
computer responds to user frustration: Theory,
design, and results. Interacting with Computers,
14, 119–140.

KOHAVI, R. (1995): The power of decision tables. In
European conference on machine learning,
Springer, 174–189.

LOPER, E. AND S. BIRD (2002): NLTK: The natural
language toolkit. In Proceedings of the ACL-02
Workshop on Effective tools and methodologies
for teaching natural language processing and
computational linguistics-Volume 1, Association
for Computational Linguistics, 63–70.

LOVINS, J. B. (1968): Development of a stemming
algorithm. Mech. Translat. & Comp. Linguistics,
11, 22–31.

MCCALLUM, A., K. NIGAM, ET AL. (1998): A
comparison of event models for naive Bayes text
classification. In AAAI-98 workshop on learning
for text categorization, 752, 41–48.

MINER, A., A. CHOW, S. ADLER, I. ZAITSEV, P.
TERO, A. DARCY, AND A. PAEPCKE (2016):
Conversational Agents and Mental Health:
Theory-Informed Assessment of Language and
Affect. In Proceedings of the 4th International
Conference on Human Agent Interaction, ACM,
123–130.

MOHAMMAD, S. M. AND P. D. TURNEY (2013):
Crowdsourcing a Word-Emotion Association
Lexicon, 29, 436–465.

PAL, S. K. AND S. MITRA (1992): Multilayer
perceptron, fuzzy sets, and classification. IEEE
Transactions on neural networks, 3, 683–697.

PLATT, J. (1998): Sequential minimal optimization:
A fast algorithm for training support vector
machines.

PLUTCHIK, R. (2001): The Nature of Emotions.
American scientist, 89, 344–350.

RAMOS, R. (2017): Screw the Turing Test -
Chatbots don’t need to act human.
https://venturebeat.com/2017/02/03/screwthe-
turing-test-chatbots-dont-need-to-act-
humanonline, retrieved 30/05/2018.

TAN, A.-H. ET AL. (1999): Text mining: The state of
the art and the challenges. In Proceedings of the
PAKDD 1999 Workshop on Knowledge Discovery
from Advanced Databases, 8, 65–70.

UNIVERSITY OF WAIKATO (2018): Weka project
Page. http://www.cs.waikato.ac.nz/ml/weka/
online, retrieved 13/06/2018.

VAN EEUWEN, M. (2017): Mobile conversational
commerce: messenger chatbots as the next
interface between businesses and consumers.

